A Dendritic Mechanism for Decoding Traveling Waves: Principles and Applications to Motor Cortex
نویسندگان
چکیده
Traveling waves of neuronal oscillations have been observed in many cortical regions, including the motor and sensory cortex. Such waves are often modulated in a task-dependent fashion although their precise functional role remains a matter of debate. Here we conjecture that the cortex can utilize the direction and wavelength of traveling waves to encode information. We present a novel neural mechanism by which such information may be decoded by the spatial arrangement of receptors within the dendritic receptor field. In particular, we show how the density distributions of excitatory and inhibitory receptors can combine to act as a spatial filter of wave patterns. The proposed dendritic mechanism ensures that the neuron selectively responds to specific wave patterns, thus constituting a neural basis of pattern decoding. We validate this proposal in the descending motor system, where we model the large receptor fields of the pyramidal tract neurons - the principle outputs of the motor cortex - decoding motor commands encoded in the direction of traveling wave patterns in motor cortex. We use an existing model of field oscillations in motor cortex to investigate how the topology of the pyramidal cell receptor field acts to tune the cells responses to specific oscillatory wave patterns, even when those patterns are highly degraded. The model replicates key findings of the descending motor system during simple motor tasks, including variable interspike intervals and weak corticospinal coherence. By additionally showing how the nature of the wave patterns can be controlled by modulating the topology of local intra-cortical connections, we hence propose a novel integrated neuronal model of encoding and decoding motor commands.
منابع مشابه
Numerical Prediction of Stator Diameter Effect on the Output Torque of Ultrasonic Traveling-wave Motor, using Finite Elements Simulation
Nowadays, piezoelectric materials have wide applications in various industries. Therefore, investigation of these materials and their applications has a special importance. In this paper first, the natural frequencies of a traveling-wave piezoelectric motor are achieved, using finite elements simulations. Then, applying an alternative electrical voltage to the piezoelectric ring, a traveling wa...
متن کاملPossible mechanism of tolerance to ketamine-induced blockade of cortical spreading depression
Ketamine (KET) induced blockade of cortical spreading depression (CSD) declines with repeated KET applications in a way suggesting the development of tolerance. Possible mechanism of this process was studied in 31 rats anestheized with pentobarbital. CSD was elicited by injection of 1µl of 5% KCl into cortex at 15 min intervals and monitored by recording the accompanying slow potential waves....
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملDifferential Cortical Oscillatory Patterns in Amputees with and Without Phantom Limb Pain
Objective: Phantom limb pain (PLP) as neuropathic pain affects the life of amputees. It is believed an efficient PLP treatment should consider the underlying neurological mechanisms. Hereby, we investigated brain activity in PLP’s and relations to the psychological and cognitive dimension of chronic pain. We investigate differences in resting brain activities between amputees with and without p...
متن کاملEffect of Trigonelline on Dendritic Morphology in the Hippocampus and Prefrontal Cortex in Streptozotocin-Induced Diabetic Rats
Introduction: Diabetes mellitus causes adverse changes in the neurological morphology of the hippocampus and prefrontal cortex of the brain by increasing oxidative stress. Trigonelline has antihyperglycemic effects and can inhibit oxidative stress. The aim of this study was to evaluate the protective effect of trigonelline on dendritic changes in hippocampal and prefrontal cortex neurons in dia...
متن کامل